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Understanding the factors driving ecological and evolutionary
interactions of economically important plant species is
important for agricultural sustainability. The geography of crop
wild relatives, including wild potatoes (Solanum section Petota),
have received attention; however, such information has not
been analysed in combination with phylogenetic histories,
genomic composition and reproductive systems to identify
potential species for use in breeding for abiotic stress tolerance.
We used a combination of ordinary least-squares (OLS) and
phylogenetic generalized least-squares (PGLM) analyses to
identify the discrete climate classes that make up the climate
niche that wild potato species inhabit in the context of breeding
system and ploidy. Self-incompatible diploid or self-compatible
polyploid species significantly increase the number of discrete
climate classes within a climate niche inhabited. This result was
sustained when correcting for phylogenetic non-independence
in the linear model. Our results support the idea that specific
breeding system and ploidy combinations increase niche
breadth through the decoupling of geographical range and
niche diversity, and therefore, these species may be of particular
interest for crop adaptation to a changing climate.
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1. Introduction
Potato (Solanum tuberosum L.) is themost important tuber cropworldwide and is the fourthmost important
crop globally [1]. There is a lack of genetic diversity among many crops, including S. tuberosum [2,3],
placing increased pressure upon crop management protocols to maintain food security. A proven
approach to increasing genetic diversity in crop species is through the utilization of wild relatives for
crop improvement [2,4]. Cultivated potato has 199 known wild relatives, forming the Solanum section
Petota, inhabiting 16 countries in the Americas, and ranging from 38° N to 41° S [5]; 72 of the most
threatened and useful species to humans have recently been prioritized for conservation [1]. These 72
species are most found in tropical highlands at 600–1200 m in elevation and possess phenotypes similar
to cultivated potato through the production of a starchy tuber [6].

Given the importance of maintaining crop productivity, many attributes of the wild relatives of
S. tuberosum have been defined; their ploidy, breeding system, germplasm classification, endosperm
balance number, phylogenies and geographical ranges [1,5,7–9]. These data can be used to discover
novel beneficial characteristics present within the wild relative germplasm. Furthermore, research has
identified potato as one of the crops in sub-Saharan Africa with the highest potential to benefit from
crop wild relatives (CWRs) for climate change adaptation; however, these results have not been
integrated with biological (e.g. breeding system and ploidy) and evolutionary (e.g. phylogenetic tree)
information [10]. Despite the wide array of information surrounding the wild relatives of potato, one
attribute continues to be under-defined—the discrete climate zones each species inhabits that in
aggregate make up the species niche and the factors involved (e.g. breeding system, ploidy) in driving
the evolution of the highly dynamic climatic diversity in Solanum section Petota.

Individually exploring life-history traits [11–14] such as the breeding system has led to contradictory
conclusions regarding these traits’ influence on ecological range [9,15–20], while other traits such as
ploidy [21] have shown a consistent influence. For example, diversification models Zenil-Ferguson
et al. [22] showed that ploidy is the most probable pathway to evolve self-compatibility across
Solanaceae. Therefore, there exists an important interaction between ploidy and breeding system
[9,16,23] that might impact evolutionary and ecological processes [14]. Polyploidization facilitates self-
compatibility as whole genome duplication provides security against inbreeding depression
[9,16,22,23]; whereas, self-compatible diploid populations often suffer from large inbreeding
depression [24,25]. As a result, diploid populations are more reliant on self-incompatibility to drive
adaptive evolution. In Solanaceae, polyploid species show higher rates of self-compatibility [9,16,23].
This clear interaction between ploidy and breeding systems provides the opportunity to test a key
hypothesis: that self-compatible species rely on polyploidy in order to generate the variation they
need to colonize wider niche space (i.e. more discrete climate zones).

To identify the driving factors of ecological diversity in potato wild relatives, we investigated two key
biological aspects of ecological diversity—breeding system and ploidy in 72 wild relatives of potato. We
combined species’ occurrence, climatic, biological (e.g. breeding system and ploidy) and phylogenetic
tree of Solanum taxa to test whether the niche breadth (i.e. number of discrete climates that make up
the climate niche) of a given species is guided by a specific breeding system and ploidy interaction.
To account for the potential decoupling of geographical range and niche breadth [26], the measure of
climatic diversity is through the use of discrete climate-classification of each occurrence of these wild
relative species. This approach has the added benefit of providing operationalizable information for
plant breeders by identifying the optimal climate to use a CWR for plant breeding. This work
supports classic ecological theory of niche divergence without the requirement of inferring continuous
species distributions from point-based climate descriptions by featuring the relationship between two
common intrinsic factors of niche expansion: (i) decreased reliance on outcrossing reproduction of
polyploid variants; and (ii) increased reliance on outcrossing reproduction of diploid variants [27–30].
2. Material and methods
2.1. Data collection
Data organization and analyses were conducted using the R [31] packages ‘raster’ [32] and ‘tidyverse’
[33]. We obtained 49 165 occurrence records of the 72 Solanum species sourced from Castañeda-
Álvarez et al. [1]. These occurrences represent the most threatened and useful wild relatives of
S. tuberosum, the previously cleaned points were further filtered for those lacking latitudinal and/or
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longitudinal information, resulting in a total of 37 032 total occurrence points [1]. The number of
occurrences per species are in electronic supplementary material, table S1. Next, the Köppen–Geiger
three-tier climate class system was acquired from Rubel & Kottek [34]. The Köppen–Geiger climate
class system divides climates into five main groups that are subdivided based on seasonal
precipitation and temperature that result in 30 potential discrete classes globally (reviewed in [34]).
The Köppen–Geiger is one of the most widely used systems for analysing ecological conditions and
identifying primary types of plants of a latitudinal and longitudinal intersection. Descriptions of the
climate classes are found in electronic supplementary, table S2, and positions in climate space are
found in electronic supplementary material, figure S1. Three-tier climate classes were extracted at each
occurrence point. The total number of climate classes per species was counted for each species, and
climate classes with three or fewer occurrences were removed in order to avoid ‘by-chance’
occurrences. Even though climate classes are artificially defined entities without hard boundaries,
using discrete climate classes allows for a common measure of both niche diversity and breadth,
which is easily operationalized by agricultural professionals. See github repository ‘https://github.
com/Nfumia/Potato_nichediversity_drivers ’ for code and data files.

2.2. Ploidy and breeding system data
Solanum species ploidy was assessed from Rivero et al. [35], where they classified ploidy by curating all
the records available from the chromosome count database CCDB [36] and then manually checking for
multiplicities of 12 to decide what was a diploid (2n = 24 or close to that number in the presence of
aneuploidies) or a polyploid (3x = 36, 4x = 48, and so forth). In the original database, populations that
have mixed ploidies were recorded (e.g. Solanum andreanum is both diploid and polyploid). A recent
paper on Brassica species by Román-Palacios et al. [37] showed that both classifications are mostly
indistinguishable in trees with a lot of tips, which is the case of Solanaceae. In our dataset there are
higher polyploids (6x and 8x, e.g. Solanum demissium is 6x = 72). The self-compatibility assessment
builds on the data from Goldberg & Igic ́ [38] where new species were added based on the T2-type
RNases when data was available after 2012. There are species with both self-incompatible (SI) and
self-compatible (SC) populations in the dataset but the level of outcrossing is difficult to tell for all of
the species—650 taxa [35].

2.3. Linear models for climate classes
A linear model was fitted using R package ‘stats’ [31] to identify which interaction of biological factors is
correlated with niche diversity in Solanum section Petota. We used the number of discrete climate classes
in which each taxon can occur as a proxy for niche breadth, as these niches vary spatially within the five
broad descriptors of tropical, dry, temperate, continental and polar, each of which possessing 2–12
subclassifications. For example, the niche of Solanum stoloniferum has 15 discrete climate classes, but
the niche of Solanum albornozii has only one, a temperate oceanic environment. The number of discrete
climate classes is the response variable for the model. The predictor variables were combinations of
ploidy [1] and breeding system [9,22] for each species, which were coded as dummy variable
interaction terms: self-incompatible diploid, self-compatible diploid, self-compatible polyploid and
asexually propagating diploid.

2.4. Phylogenetic tree and phylogenetic linear models
A Bayesian molecular clock phylogeny with time-calibration of section Petota to outgroups of
domesticated tomato (Solanum lycopersicum) and domesticated eggplant (Solanum melongena) was
estimated using 32 plastid genomes and compared with the most recent time-calibrated phylogeny of
Särkinen et al. [39]. Due to a lack of plastid genome availability for some species in Solanum section
Petota, only 27 of the 72 prioritized wild relative species were present in our subsequent analyses.
Furthermore, 32 species (27 potato wild relatives, two domesticated potato, one domesticated tomato,
one tomato wild relative and one domesticated eggplant) were aligned using the software MAFFT
(multiple alignment using fast Fourier transform) via maxiterate version [40]. MrBayes [41] as
implemented in the Geneious software package [42] was used to conduct an initial phylogenetic
analysis [43,44]. We used a chain length of 10 million generations with 25% (or 2.5 million) burn-in
and a subsampling frequency every 1000 generations. The general time reversible (GTR) substitution
model was employed for the Bayesian analysis with rate variation of gamma, including four categories.

https://github.com/Nfumia/Potato_nichediversity_drivers
https://github.com/Nfumia/Potato_nichediversity_drivers
https://github.com/Nfumia/Potato_nichediversity_drivers
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We used the Bayesian uncorrelated relaxed clock-model dating method as implemented in BEAST2
[45]. The uncorrelated relaxed clock-model allows for rate variation across branches and measures for
rate autocorrelation between lineages. Node ages are estimated simultaneously in BEAST2, and,
therefore, uncertainty is incorporated into the node-age estimation. Our Bayesian MCMC tree output
was used as a starting phylogeny. The Hasegawa–Kishino–Yano (HKY) model for DNA base pair
substitution was used to better estimate the substitution rates of transition versus transversion as well
as the Felsenstein (F81) proposed four-parameter model. A Kappa of 2.0, as estimated by BEAUti2 [45],
was employed. Calibration points for the node-age estimation were sampled from Särkinen et al. [39] to
create calibration priors: (i) tomato–potato split ca 8 Ma (95% HPD 7–10) and (ii) eggplant–tomato/
potato split ca 14.3 Ma (95% HPD 13–16). These calibration points reflect a normal distribution with
standard deviations of 0.85 and 1.10 Myr, respectively. Yule tree prior with uniform distribution was
used given all ingroup and outgroup species in this study that currently persist ex situ and/or in situ.
Priors were manually generated for each monophyletic clade showing greater than 85% posterior
probability from the MrBayes MCMC analysis. Default priors were used for all other parameters.
A total of 100 million generations, 10 runs with 10 million generations each, were run in BEAST2 [45].

Using the time-calibrated phylogeny (electronic supplementary material, figure S2), we estimated the
phylogenetic generalized linear models version of the OLS models proposed in the previous section to
account for potential phylogenetic signals in the errors [46,47]. This is an important step, since it is
possible that our explanatory variables are not tracking the evolutionary history of the Petota section,
and can incorrectly conclude strong correlations between the climatic classes and the life-history traits [48].

These phylogenetic linear models were estimated using a maximum-likelihood phylogenetic
generalized least-squares (PGLM) with the R package ‘phylolm’ [49]. For all the PGLMs we assumed
a Brownian motion model of evolution [47,50,51]. Outgroup species and cultivated potato were
removed at this point due to the inability to differentiate between cultivated and wild occurrence of
the given species. This resulted in retention of 27 potato wild relative species, comprising the four
major monophyletic clades of section Petota [52], for use in the PGLMs analysis.
3. Results
3.1. Climate regression
The 72 prioritized species in the Solanum section Petota examined here occurred in 17 distinct climates
(where the combination of the discrete climate classes in total make up the climate niche) with
individual species distributions ranging from a single climate (e.g. S. albornozii, S. chilliasense, S. lesteri)
to 15 distinct climates (e.g. S. stoloniferum). The count can, therefore, be a reasonable proxy for niche
breadth. Within this range exists a spectrum of breeding system and ploidy combinations between
and within these species and their populations, exhibiting different extents of climate niche diversity
(figure 1). This analysis showed that distinct breeding system and ploidy combinations existed in a
different number of niches ( p = 3.4 × 10−7), described as the number of discrete Köppen–Geiger climate
classes. Species that possess populations that are self-incompatible diploid and self-compatible
polyploid show the greatest mean climate diversity with 11 discrete climate classes (figure 1).
Self-incompatible diploid species exhibit a greater average niche diversity when compared with self-
compatible diploid species (figure 1). Furthermore, species that contain both diploid and polyploid
cytotypes demonstrate greater sustained ecological divergence.

The maximum-likelihood intercept value of ecological niche diversity is 2.81 ± 1.01 climate classes.
Species existing as self-incompatible diploid or self-compatible polyploid have significantly ( p-value <
0.01) larger climatic niches by 3.13 ± 0.73 and 3.62 ± 0.79 discrete climate classes, respectively (table 1).
However, other predictor (self-compatible diploid, asexually propagating unknown breeding system
diploid) variable slope values are not significantly different from zero, and, therefore, they exert no
measurable influence on niche diversity within Solanum section Petota. Overall, the model explained a
moderate amount of variance with an adjusted R2 of 0.39.

3.2. Evolutionary climate regression
In the PGLMs fitted using our estimated time-calibrated phylogeny (figure 2), we found an estimated
intercept value of 6.43 ± 1.67 (table 2). The PGLMs confirmed the correlations of OLS models, with
self-incompatible diploid (3.98 ± 1.04) and self-compatible polyploid (2.57 ± 0.98) significantly
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Figure 1. Boxplot of niche diversity by breeding system and ploidy interaction in potato wild relative species. Many species exist
containing multiple subpopulations with differing biological factors, as seen by combination of such factors on the x-axis.

Table 1. Results from the linear model for climatic niche diversity following Gaussian distribution. The number of discrete
climate classes in which each taxon can occur (i.e. a proxy for niche breadth) is the response variable, climate niche diversity.
The predictor variables are combinations of ploidy and breeding system for each species, which were coded as dummy variable
interaction terms: self-incompatible diploid, self-compatible diploid, self-compatible asexually propagating polyploid and unknown
breeding system asexually propagating diploid. Values reported in column 2 are the maximum-likelihood estimates and standard
error of the estimates (surrounded by parentheses).

dependent variable:

climatic niche diversity

ordinary least-squares results

self-incompatible diploid 3.134���

(0.734)

self-compatible diploid 0.569

(1.021)

self-compatible polyploid 3.624���

(0.789)

asexual diploid 0.883

(0.992)

intercept (MLE) 2.813���

(1.006)

observations 72

R2 0.426

adjusted R2 0.392

residual s.e. 2.493 (d.f. = 67)

F statistic 12.424��� (d.f. = 4; 67)
���p < 0.001.
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Figure 2. Dual figure with time-calibrated molecular clock phylogeny (left) with climatic niche diversity (i.e. number of climate
classes occupied) (right). On the left side, the x-axis scale bars represent millions of years and the background coloration of
the phylogenetic tree highlights widely accepted clades of Solanum section Petota. On the right side, the number of climate
classes a species occurs in is represented by the size of the horizontal bar and measured with the x-axis scale bar, and the
coloration of the horizontal bars represents species biological attributes as breeding system with ploidy.
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increasing ecological diversity (table 2). As with OLS, the other predictor variables in PGLMs are not
significantly different from zero.
4. Discussion
Clarifying the impacts of plant traits on niche divergence is important to understanding the structure of
global patterns of biodiversity and evolution in plant lineages [53]. Furthermore, life-history traits can
provide clues about the potential resiliency of plants as humans increasingly develop wildlands.
However, resilience may be tightly linked with other characteristics. In Solanum section Petota, the
interaction of two specific characters, breeding system and ploidy, explain a large portion of the
variation in niche divergence. The models presented here, OLS and PGLMs, explain 39% and 44%
(R2), respectively, of the specific measure of climatic variation present within Solanum section Petota
with two alternate ends of the biological spectrum serving as the most significant predictors. On one
end, self-incompatible diploid species exhibit the greatest significant correlation to climatic niche
diversity within potato wild relatives. Such sustained diversity is probably the result of constant
capacity for outcrossing between these species and their subsequent heterogeneous design, fashioning
an adaptive and resilient population through long-distance gene flow [54]. Due to the interaction
between ploidy and breeding system, self-incompatible diploid species show niche diversity similar to
self-compatible polyploid species, confirming the dynamic nature of the Solanaceae system
[9,16,22,23]. However, self-fertilizing polyploid species have a short-term advantage as they can
colonize new environments with very few individuals.

For all the Solanaceae family, self-incompatible diploidy has been shown to be the ancestral state [22];
they also have faster net diversification compared with all self-compatibles, both diploid and polyploid
[55]. The expectation given the success of these lineages in diversification is that self-incompatible
diploids should have broader niches; an unexpected result was that self-compatible polyploids
diversified in a similar way. Evolutionarily this may be a temporal effect; polyploids are successful in



Table 2. Results from phylogenetic linear models for climatic niche diversity following Brownian motion. The number of discrete
climate classes in which each taxon can occur (i.e. a proxy for niche breadth) is the response variable, climate niche diversity.
The predictor variables are combinations of ploidy and breeding system for each species, which were coded as dummy variable
interaction terms: self-incompatible diploid, self-compatible diploid, self-compatible asexually propagating polyploid and unknown
breeding system asexually propagating diploid. Values of reported in column 2 are the maximum-likelihood estimates and
standard error of the estimates (surrounded by parentheses).

dependent variable:

climatic niche diversity

phylogenetic least-squares results

self-incompatible diploid 3.984���

(1.036)

self-compatible diploid 1.856

(1.536)

self-compatible polyploid 2.574�

(0.975)

asexual diploid −2.332
(1.620)

intercept (MLE) 6.426���

(1.670)

sigma2 8.088 × 10−9

(2.967 × 10−9, 1.067 × 10−8)

sigma2 error 4.497

(1.650, 5.933)

observations 27

R2 0.527

adjusted R2 0.441

residual s.e. 4.761 (d.f. = 22)

parametric bootstraps 100
�p < 0.05,���p < 0.001.
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short time scales, and this may explain the success in diversification identified here; however, this study
does not disentangle evolutionary timescales. Our results suggest that self-compatible diploids appear
evolutionarily transient, and the evolution of self-compatibility appears to occur very rarely without a
polyploidy event in Solanaceae.

Self-compatible polyploid species have increased climatic niche diversity, which, given their increased
genetic variation and plasticity through additional sets of chromosomes, makes them capable of adaptive
and resilient population generation [56]. Polyploidy allows self-fertilizing section Petota species to
maintain and derive novel diversity typically observed in outcrossing/self-incompatible diploid
populations. These differences between breeding system and ploidy with niche diversity provide
support for the use of these variable combinations as driving evolutionary forces, with qualitative
results (figure 1) being supported by OLS (table 1) and PGLMs (table 2).

Our results suggest the potential to use ecologically plastic species could be useful to enhance the
adaptability of cultivated potato lines in the face of climate change. However, the wild species often
have limited cross-compatibility with S. tuberosum, as evidenced in their endosperm balance numbers,
requiring extensive empirical testing. Therefore, time is needed in order to operationalize the use of
CWRs in breeding programmes, so that favourable environmental adaptations from a subset of
ecologically plastic species, can be introgressed while breaking linkages to agronomically unfavourable
traits. Matching individual climate classes with potential places where cropping may shift helps provide
a heuristic to match agroclimatic zones with potential donor species, this provides breeders with
potentially adapted material for future projected climate shifts.
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The impact of breeding system on the evolution of climatic niche breadth among plants is still
unclear and the Solanum section Petota system contributes important evidence for a multilayered
role where breeding system and ploidy interact synergistically with one another. In one case, self-
incompatible breeding systems play a large role in sustaining niche diversity over time [19] when
species are diploid, possessing limited reproductive barriers. By contrast, self-compatible breeding
systems comparatively increase niche diversity when species are polyploid, by enhancing their
ability to reach, reproduce, establish and adapt [17] with the biological safety net of increased
‘buffering capacity’ through genetic variation [11]. Further investigations could focus on the
decoupling of breeding system and ploidy; however, due to the self-incompatibility conferred by
S-RNases found in polyploid populations of Solanaceae this is challenging [9,16,22]. Furthermore, this
study was not able to completely decouple ploidy and breeding system interactions due to lack of
data on particular species’ breeding systems, exemplifying the need for more than DNA collection.
Additionally, a limitation of this analysis is the limited number of species available for PGLMs, which
was due to a lack of publicly available plastid genome sequence data. There is also a need for future
research on exploring the extent of different populations or cytotypes representing the different
breeding systems and ploidy combinations, as well as understanding the grey area in mixed
compatibility species. This would allow for a complete decoupling of the life-history traits and would
also allow for a more nuanced understanding of species. Further, our approach is limited by the
current knowledge of taxonomy, if the species within the section Petota are revised then the analysis
would need to be updated.

Polyploidization has the potential to broaden the climatic niche to a similar extent as would occur
with an outcrossing diploid population. The breeding system is the main driver of niche breadth
expansion in the self-incompatible diploid populations, while only a secondary contributor in the
self-compatible polyploid populations. Despite the biological differences, the resulting niche diversity
is not seen in a difference of preferred climate type but rather the extent of climatic diversity
(electronic supplementary material, figure S3). Through decoupling geographical range size and niche
breadth [26], this study tests classic theory by using a highly diverse, economically important section
of plants. Our findings lend credence to the hypothesis that these ecologically plastic responses
evolved over millions of years in species with populations of self-incompatible diploids and self-
compatible polyploids, and, therefore, these species should be prioritized for conservation and for use
to adapt our cultivated varieties to a changing climate.
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