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Climate change is expected to severely impact cultivated 
plants and consequently human livelihoods1–3, especially in 
sub-Saharan Africa (SSA)4–6. Increasing agricultural plant 
diversity (agrobiodiversity) could overcome this global chal-
lenge7–9 given more information on the climatic tolerance of 
crops and their wild relatives. Using >200,000 worldwide 
occurrence records for 29 major crops and 778 of their wild 
relative species, we assess, for each crop, how future climatic 
conditions are expected to change in SSA and whether popu-
lations of the same crop from other continents, wild relatives 
around the world or other crops from SSA are better adapted 
to expected future climatic conditions in the region. We show 
that climate conditions not currently experienced by the  
29 crops in SSA are predicted to become widespread, increas-
ing production insecurity, especially for yams. However, crops 
such as potato, squash and finger millet may be maintained 
by using wild relatives or non-African crop populations with 
climatic niches more suited to future conditions. Crop insecu-
rity increases over time and with rising GHG emissions, but 
the potential for using agrobiodiversity for resilience is less 
altered. Climate change will therefore affect sub-Saharan 
agriculture but agrobiodiversity can provide resilient solu-
tions in the short and medium term.

Global climate has changed rapidly over recent decades, and 
temperature and precipitation regimes are predicted to shift sig-
nificantly in the near future10. Future impacts on both biodiversity 
and human livelihoods are significant and primarily negative2,4,11. By 
affecting plant productivity, and thus industrial and food crop yield, 
climate change is expected to impact global human economy and 
subsistence1,2. Its tropical location, socioeconomic, demographic, 
policy and farming characteristics place sub-Saharan Africa (SSA) 
at major risk5,6. Assessing which sub-Saharan crops, regions and 
populations will be most affected, as well as potential future adapta-
tions, is therefore essential.

Agrobiodiversity and breeding programmes are an important 
adaptive strategy for agriculture in a changing world8,12. Currently 
cultivated crops may exhibit reduced genetic variation compared 
to that found in wild relative populations, which may limit their 
resilience and adaptation to future environmental conditions13. 
Crop improvement through selection for traits from other land-
races or wild relatives could confer resilience to changing climates 
and increase crop survival, growth and yield. Therefore, preserv-
ing and increasing breeding germplasm diversity by identifying 
and targeting crop diversity and wild relatives is an important first 
step14,15. Here, we quantify the expected shifts in climatic conditions 

by 2050 and 2070 for 29 major crops across SSA. We then assess 
whether non-African crop populations, wild relatives around the 
world and/or other sub-Saharan crops with different climate toler-
ances can offer alternative, more resilient varieties to the problem 
of climate change.

We collected occurrence records for 29 crop species widely culti-
vated in SSA and 778 of their wild relatives worldwide (Supplementary 
Tables 1 and 2). The selected crop species include cereals, starch sta-
ples, vegetables, edible fruits and commodity crops, most of which 
are key to subsistence and economy as they provided >2,040 kcal 
per capita per day and a total gross production of >US$108 billion 
across Africa for 2013 and 2016, respectively16. Using principal com-
ponent analyses and minimum convex polygons with outlier detec-
tion (see Methods), we related each crop’s occurrences to multiple 
climatic (mean, seasonal and extreme temperature and precipita-
tion) and topographic variables essential to plant development to 
estimate their current climatic niches (defined as a two-dimensional 
climate space) in SSA. We then identified future climates expected 
at the current locations of each crop by 2050 and 2070 according to 
14 general circulation models (GCMs) and two GHG emission sce-
narios: representative concentration pathways (RCPs) 4.5 and 8.5. 
RCP 4.5 represents a mid-to-low end emission scenario that consid-
ers a peak in GHG emissions around 2040 and a decline afterwards, 
better matching the targets set by the Paris Agreement of the United 
Nations Framework Convention on Climate Change (UNFCCC)17, 
whereas RCP 8.5 represents an extreme scenario for which emissions 
are expected to increase throughout the twenty-first century. Finally, 
we estimated the potential security of each crop as the proportion of 
future climatic space currently experienced by the crop (Fig. 1). All 
crop occurrences were assumed to represent rain-fed and non-fer-
tilized populations given the low proportion of irrigated/fertilized 
land across SSA, but possible expansions of crop niches due to these 
or other human management factors (for example, weed control) 
cannot be fully discarded18,19.

The potential of three strategies was then assessed. First, as 
climatic niche shifts are common in cultivated plants across con-
tinents20, we evaluated whether populations from other world 
biogeographic regions exist in the expected new future climatic con-
ditions for each crop. Second, because wild relatives occur in many 
different natural environments and may exhibit traits adapted to 
specific climatic conditions13–15, we assessed whether wild relatives 
have already shown adaptation to the expected new future climatic 
conditions of each crop. Third, a crop that cannot be grown under 
new climatic conditions could be replaced with alternative crops 
that fulfil similar or different nutritional and/or economic needs21. 
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Therefore, we assessed whether each crop’s expected new future cli-
matic conditions were within the current tolerance range of each of 
the other 28 sub-Saharan crops (Fig. 1). Alternative strategies may 
be considered to adapt to future climate change9,21, such as genetic 
engineering22, but we assessed only those that represent significant 
continent-wide solutions related to agrobiodiversity, and for which 
there is credible data consistency and availability.

As climate is expected to change substantially in SSA, by 2050 
and 2070, respectively, ~12% and ~26% of the future climate space 
is expected to be novel where the 29 crop species currently grow  
(Figs. 2 and 3, Supplementary Table 1 and Supplementary Fig. 1). 
These percentages vary according to the GCM or niche quantifica-
tion measure considered, but increase significantly in 2070 from pro-
jected low to high GHG emission scenario (Fig. 3 and Supplementary 
Figs. 1–4). For a few crops, the emergence of new climates is expected 
to be especially strong, which is in agreement with previous find-
ings23. For example, the future of the Guinea yam is particularly 
uncertain given that ~56% of its future climate is expected to be new 
by 2070. This is due to its relatively small distribution, mainly in West 
Africa, where current conditions are some of the warmest and wet-
test found in SSA, and even warmer and wetter conditions are fore-
cast by the end of the century24 (Supplementary Fig. 5).

Several regions may benefit from all three adaptive strategies (for 
example, those cultivating finger millet, potato, squash and Arabica 

coffee; Fig. 2, Supplementary Table 1 and Supplementary Fig. 1). 
Other regions may benefit from using populations from other con-
tinents (for example, those cultivating pea and taro) or using wild 
relatives in breeding programmes to ensure resilience genes that 
enable greater climatic tolerance once (re-)established in the crop 
(for example, sugarcane). However, crops such as Guinea yam may 
experience such novel climatic conditions in the future that, in the 
worst-case scenario, they may need replacement by more suitable 
crops. Compared to crop insecurity, the potential for the three adap-
tive strategies may not decrease so drastically from 2050 to 2070 nor 
from a low to high end GHG emission scenario, but it may vary sub-
stantially among crop species (Fig. 3). Although crop-specific, this 
result highlights a relative persistence of the potential for adaptation 
over increasing climate change intensity despite the increasing nov-
elty of conditions experienced by the crops.

Unsurprisingly, most non-sub-Saharan populations that may 
fare better under future climate conditions occur in other tropical 
areas (Fig. 4a; Kruskal–Wallis test: X2 = 73.6, degrees of freedom 
(d.f.) = 5, P < 0.001; Supplementary Table 3 and Supplementary  
Fig. 6). More interestingly, potentially resilient cultivars are found 
both in the Neotropics and Indomalay regions (for example, 
common bean), or mainly from one or the other (for example, 
Neotropics for potato and squash, Indomalay for pea and finger 
millet). These results reflect additional potential for certain crops 
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Fig. 1 | Analytical framework. Top: An index of crop security was measured for each of the 29 crop species as the overlap between their climatic niches, 
estimated from the current distribution in the Afrotropics (beige) and the expected future climatic conditions in these areas (purple). Bottom: Indices 
representing three adaptive strategies were then measured for each crop as the overlap between the new climate expected for the crop in the future 
(purple) and the estimated climatic niches of the same crop in other regions of the world (blue), its wild relatives across all continents (pink) and the other 
28 crops in the Afrotropics (green). The winged yam (Dioscorea alata) was taken as an example here.
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to survive under climate change in SSA, the possibility for cultiva-
tion of populations from other regions or the potential for initiat-
ing intercontinental breeding programmes between sub-Saharan 

and other regions’ crop diversity24. This last approach is particularly 
promising, as illustrated by the recent release of new potato varieties 
in Kenya from the International Potato Center, Lima, Peru (CIP), 

Guinea yam Robusta coffee Winged yam Squash Potato

Arabica coffee Enset Oil palm Soybean Taro

Pearl millet Pea Sugarcane Sweet potato Cocoa

Mango Finger millet Cotton Cassava Groundnut

Rice Pigeon pea Tomato Bean Wheat

Peanut Maize Sorghum Watermelon

Security
Strategy 1
Strategy 2
Strategy 3

Fig. 2 | Potential security and adaptive strategies for 29 sub-Saharan crops under future climate change by 2070. The 29 crops are ordered from 
high (upper left) to low risk (lower right) of being impacted by climate change. Percentages of overlap between the crops’ current climatic niches and 
projected future climatic conditions in the areas of current crop cultivation are represented by the proportion of the circle covered by the grey disk. The 
potential success of the three strategies is represented by the sizes of the pie slices. Percentages of overlap with the new climate expected in the future 
are represented by the slices’ areas within the grey disk, where 100% overlap for one strategy results in a third of the grey disk being covered. This figure 
provides median overlap values across all GCMs, RCPs and outlier selection thresholds for the year 2070. Results for 2050 and each GCM, RCP and 
outlier selection are provided in the Supplementary Information.
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which maintain significant yield under lower precipitation and 
higher temperatures25. However, as farmers in other continents tend 
to use significantly more irrigation and fertilization than Africa18,19, 
the pattern found in our study may be an overestimate and reflect 
instead the potential for persistence of the crop with improved agri-
cultural practices.

The potential for using wild relatives to improve the 29 crops 
does not appear to be associated with the degree of genetic relat-
edness between crops and their wild relatives (Fig. 4b; Kruskal–
Wallis test: X2 = 5.3, d.f. = 3, P = 0.15; Supplementary Tables 2  
and 4 and Supplementary Fig. 6). For a given crop, genetically 
closer wild relatives (belonging to the primary gene pool; see 
Methods) are not necessarily more adapted to expected future cli-
mates than more distant relatives, and vice versa. In some cases, 
such as with finger millet, breeding with a very closely related spe-
cies (such as Eleusine indica), which may increase the chances of 
successful hybridization, may result in future climate adaptation. 
Conversely, other crops may benefit from potentially challenging 
introgression from more distant wild relatives (for example, soy-
bean and its wild relative Glycine tomentella). Several wild species 
identified in this study to be of interest have already been consid-
ered for breeding programmes to provide, for example, drought 
and heat resistance in potato (Solanum chacoense), drought or 
waterlogging tolerance in sugarcane (Saccharum arundinaceum), 
pest resistance in coffee (Coffea liberica) or improved yield in sor-
ghum (Sorghum propinquum), which attests to the potential of our 
approach to contribute to the selection of wild relatives for crop 
improvement (see https://www.cwrdiversity.org/checklist/15 for a 
detailed list of references about previous breeding efforts using 
specific wild relatives). Moreover, this potential may be underes-
timated, as many wild relatives remain to be discovered and cata-
logued14,15. Less positively, breeding programmes involving wild 
relatives, especially from secondary and tertiary gene pools, often 
require large investments of research, money and time to achieve 
both technical success (for example, providing increased climatic 
resilience without losing nutritional value) and adoption by  
farmers and consumers26.

Our results show that most crops have the climatic potential to 
be replaced in the future, mainly by other crops that are currently 
found in a large range of climatic environments and/or that are 

specific to particularly warm areas (Fig. 4c, Supplementary Table 5 
and Supplementary Fig. 6). This is the case for cassava, peanut and 
sorghum, as also highlighted in a previous study21. However, sev-
eral other potential replacement crops require additional resources 
to be cultivated (for example, paddy rice requires irrigation) or are 
industrial crops (for example, cotton and oil palm), which may 
not necessarily guarantee food security. Conversely, crops such 
as the common bean, yams or the ‘false banana’ enset have been 
identified as poor candidates to replace other crops21. This result 
might not only reflect the physiological capacity of crops but also 
regional cultural preferences. For example, enset, which requires 
substantial ethnobotanical knowledge for cultivation and process-
ing, is only cultivated in Ethiopia, although undomesticated enset 
occurs sparsely in other African countries. However, it is consid-
ered a potential crop for future food security due to its tolerance to 
drought and its high productivity27. Major and orphan crops other 
than the 29 studied here could also be considered, which might 
eventually reinforce a replacement strategy.

Although this study represents a broad exploration of the options 
for providing resilient sub-Saharan crops under climate change at 
unprecedented geographic and taxonomic scales and relies on a 
large amount of information, several limitations are to be noted. 
The documentation of the global distribution of crops and their 
wild relatives is still incomplete14: collecting more and finer occur-
rence data, especially in regions with current climatic conditions 
similar to those projected in the future for a given area of interest, 
will greatly help in refining these results. Given that other factors 
act in synergy with the average climate for the crops and their wild 
relatives to grow and/or produce28,29, the effects of extreme climatic 
events, soil quality, plant genetics or functional specificities, crop 
pests, human agricultural and cultural practices, or atmospheric 
CO2 levels are to be considered in future work. Finally, previous 
studies on a few major crops predicted losses in production and 
area of up to 15% by 2050 and 30% by the end of the twenty-first 
century3,21, which match our estimates of crop insecurity relatively 
well. Nevertheless, the relationship between crop occurrence, envi-
ronmental suitability and yield remains poorly known. In this con-
text, combining correlative and process-based approaches will be 
key to improve predictions of the impact of climate change on sub-
Saharan agriculture and human livelihoods3.
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Fig. 3 | Potential security and adaptive strategies for 29 sub-Saharan crops under different scenarios of future climate change. Mean and 95% 
confidence intervals are given for each overlap value across all crops, GCMs and outlier selection, and for each time period (2050 and 2070) and RCP 
scenario. Results for each crop, GCM and outlier selection are provided in the Supplementary Information.
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Different adaptive strategies may be available for SSA to face 
the detrimental effects of future climate change in the short and 
medium term. Although crop substitution may be implemented 
more rapidly than crop improvement, social factors such as local 
investments in agricultural research and development, cultural 
preferences and time for adoption and diffusion of new cultivars 
must also be considered26. Overall, our study shows that agrobio-
diversity, fusing the rich world diversity in crops and wild relatives, 
can represent a major solution through a global benefit sharing 
system30. Preserving, studying, exchanging and using this diversity 
responsibly and sustainably is therefore essential in times of serious 
economic, demographic and environmental change in SSA.

Online content
Any methods, additional references, Nature Research reporting 
summaries, source data, statements of code and data availability and 
associated accession codes are available at https://doi.org/10.1038/
s41558-019-0585-7.
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Methods
Study species. We studied 29 different crop species and 778 of their wild relatives 
(Supplementary Tables 1 and 2). The 29 crop species were chosen if (1) they were 
known to be cultivated relatively widely in SSA according to both the FAO16 and 
experts from Royal Botanic Gardens Kew, UK and the Council for Scientific and 
Industrial Research (CSIR), South Africa, (2) reliable and numerous occurrence 
data were available across their known distribution in SSA and (3) their wild 
relatives could be identified. Most crops are food crops, but some are industrial 
(for example, cotton). Out of the 29 crops, 27 genera are represented (given 
the presence of two yam species (Dioscorea rotundata–cayenensis complex and 
D. alata) and two coffee species (Coffea arabica and C. canephora)). The crops 
comprise different life forms (trees, shrubs, herbs and vines) and longevities 
(annuals and perennials). Because of the relatively poor taxonomic and geographic 
quality of infra-specific/hybrid data, we decided to work at a species level for 
both crops and wild relatives. The identity of 967 wild relative species of the 29 
crops was therefore retrieved from the project ‘Adapting agriculture to climate 
change: collecting, protecting and preparing crop wild relatives’ (https://www.
cwrdiversity.org15) in November 2016. As part of this project, each wild relative 
was assigned a degree of relatedness to its associated crop following a four-gene-
pool classification31,32, with the species from the primary gene pool considered 
to be more closely related to the crop and therefore easier to breed with it than 
the species from the fourth. We used this classification because (1) it is based 
directly on plant crossing ability and past utility and (2) complete phylogenies 
are not available for many of our species of interest. We discarded 189 out of the 
967 species as these did not have the minimum three occurrences necessary for 
conducting climatic niche analyses (see ‘Occurrence data’). Thirty-nine genera 
were represented within the final list of 778 wild relatives. Finally, it is important to 
note that the 778 species are considered wild relatives in a broad sense, given that 
some of them may have also been partly domesticated.

Occurrence data. Worldwide occurrence records for the 29 crops and 778 
wild relatives were collected from several sources: the crop wild relative global 
occurrence database compiled by the project ‘Adapting agriculture to climate 
change: collecting, protecting and preparing crop wild relatives’ (https://www.
cwrdiversity.org), the Global Biodiversity Information Facility database (GBIF, 
https://www.gbif.org), the Genesys database from the global portal to information 
about Plant Genetic Resources for Food and Agriculture (PGRFA, https://www.
genesys-pgr.org), the Rainbio database, which covers all continental SSA33, 
agricultural surveys conducted in more than 9,500 households across 11 African 
countries34 and in more than 1,000 households across Ghana, Malawi and 
Swaziland from collaborators of the FICESSA project (https://supportoffice.jp/
ficessa/). We used primary occurrence data rather than modelled distributions 
or downscaled census data, as those are not consistently available for all crops 
and wild relatives and, when available, they are of highly disparate quality and 
resolution and tend to largely overestimate species distributions, especially in SSA. 
GBIF occurrence data were extracted using the dismo package35 in R36. The online 
version of the Rainbio database provides access to occurrences of non-cultivated 
plant species only, but data for cultivated ones were also obtained directly from 
the authors. Crop occurrence data from Genesys that were not collected in the 
field (that is, from markets and stores) were discarded. For some agricultural 
survey records, household geographic coordinates were not available and names of 
administrative areas were given instead. For those occurring in small areas fitting 
in 10 arc minutes (~20 km) grid cells, we kept the coordinates of the centres of the 
cells, while we discarded other imprecise or ambiguous records. We cleaned the 
entire dataset further by discarding species’ occurrence records falling in the same 
10 arc minutes grid cells, non-contemporary data (for example, fossils and records 
older than 1950), coordinates equal to zero or any other integer value and points 
falling in the sea. From an original dataset of >1,000,000 points, we retrieved a 
total of 202,908 unique occurrence records for the 29 crops and their 778 wild 
relatives worldwide. Additionally, we categorized the region of occurrence of each 
record by using a biogeographical realm map provided by http://ecoregions2017.
appspot.com37. We used a biogeographical realm map rather than a continental 
one to consider SSA as one unique region (that is, Afrotropic) and to have a more 
ecologically meaningful classification.

Climate data. Given the global extent of our study, we used environmental 
information that was available and comparable at such a large geographic scale. 
The CHELSA database38 provides temperature and precipitation data downscaled 
at high resolution for the years 1979–2013 (hereafter considered as the ‘current’ 
climate), as well as future climate projections obtained by several downscaled 
GCMs used in the Fifth Assessment Report of the IPCC10. CHELSA has been 
shown to predict temperature patterns similarly to other climate data sources and 
to perform better for precipitation, providing better overall estimates of species 
climatic niches and distributions, especially in areas with poor weather stations 
coverage, such as SSA and other tropical countries38. The present climatic data 
from CHELSA also matched best the temporal resolution of our species occurrence 
information (Supplementary Fig. 7). We collected eight different bioclimatic 
variables from the CHELSA database at a 30 arc seconds (~1 km) resolution: annual 
mean temperature (BIO1), temperature seasonality (BIO4), maximum temperature 

of the warmest month (BIO5), minimum temperature of the coldest month (BIO6), 
annual mean precipitation (BIO12), precipitation of the wettest (BIO13) and driest 
(BIO14) months and precipitation seasonality (BIO15). These eight variables were 
selected to capture mean, seasonal and extreme (potentially limiting) temperature 
and precipitation conditions that can be essential to the survival and growth of 
domesticated and wild plant species. Despite each plant species (and each plant 
function or vital rate) being affected by climate in a different way39, considering 
different climatic variables for each species was discarded because (1) information 
about species climatic preferences or tolerance is not available for so many species 
and (2) our analyses aim at comparing species climatic ranges, so the latter must 
be analysed in a climate space built upon the same variables. Our variable selection 
covers the full spectrum of the 19 inter-related bioclimatic variables available in 
CHELSA (Supplementary Fig. 8). This selection therefore limits the incorporation 
of repetitive information and enables clear interpretations. Indeed, although some 
of the eight selected variables may still be partly correlated, multi-collinearity is 
not an issue in the multivariate analyses conducted in our study. Climate layers 
were upscaled to 10 arc minutes resolution (~20 km) using the resample function 
from the raster package40 in R. We worked at such a resolution for several reasons: 
(1) to avoid incorrect assignment of climatic variables to the occurrence records 
for which precision is not necessarily communicated by data sources41,42, (2) future 
climatic data are downscaled from coarse GCMs and therefore can only assess 
large-scale patterns43 and (3) climate is expected to be the main driver at large 
scales, whereas other factors might become more important with lower grain 
size44. Our study therefore focuses on macroclimatic, rather than microclimatic 
conditions. For future climate conditions, we used data for the 2050 and 2070 time 
periods (averages for 2041–2060 and 2061–2080, respectively) generated by 14 
GCMs and following two GHG emissions scenarios. Considering different climate 
models’ outputs and socio-economic scenarios has been shown to be essential 
for agricultural or biodiversity risk assessments45,46. The 14 GCMs were ACCESS 
1–0 (AC), BCC-CSM1-1 (BC), CCSM4 (CC), CNRM-CM5 (CN), HadGEM2-AO 
(HD), HadGEM2-CC (HG), INMCM4 (IN), IPSL-CM5A-LR (IP), MIROC-
ESM-CHEM (MI), MIROC-ESM (MR), MIROC5 (MC), MPI-ESM-LR (MP), 
MRI-CGCM3 (MG) and NorESM1-M (NO). We selected these 14 models based 
on data availability and in order to cover most of the inter-model variability47. The 
two GHG scenarios were RCPs 4.5 and 8.5. RCP 4.5 represents a mid to low end 
emission scenario that matches best the targets set by the Paris Agreement of the 
UNFCCC17. Finally, because large-scale climatic averages might not necessarily 
represent differences in topography well, we also included a slope variable to our 
analyses. Land slope was computed by applying the slope function from the Spatial 
Analyst geoprocessing toolbox from the Arc/Info GIS ESRI suite of products to a 
digital elevation model (DEM) provided by the Global Multi-resolution Terrain 
Elevation Database (GMTED)48. The original layer (30 arc seconds resolution) was 
also upscaled to 10 arc minutes resolution (~20 km). Slope was kept constant at 
future time periods. Current and future environmental information was extracted 
for each crop and wild relative occurrence record using the extract function of the 
raster package40 in R.

Climatic niche analyses. Principal component analyses (PCAs) were run to 
plot each species’ occurrences in climatic spaces made of the two first principal 
component axes, summarizing the variation in the nine bioclimatic and slope 
variables given previously. PCAs were performed using the ade4 package49 in R. To 
identify and represent each species’ niche, we drew a convex polygon around the 
occurrence points in the climatic space using the chull function of the grDevices 
package50 and several functions of the sp package51 in R. Several techniques 
quantifying niches have been highlighted in the literature (for example, range box, 
generalized additive models and MaxEnt)52. We used the convex hull because (1) it 
does not rely on point density, (2) the algorithm's performance is case-specific and 
dependent on the quality of the input data and tested hypotheses53, (3) it favours 
sensitivity over specificity and therefore targets an overestimate of the niche that 
we believe is of most relevance to the context of this study and, more generally, 
for large-scale agricultural applications and (4) it is relatively simple conceptually 
and hence easily interpretable54. Given that the sampling of occurrence points in 
this study is particularly uneven in both geographic and climatic spaces, relying 
on point density would lead to a strong bias towards highly sampled areas. The use 
of convex polygons is, however, sensitive to outliers. As some of our outliers may 
be due to previously unidentified sampling errors (for example, poor geolocation, 
botanic gardens’ coordinates and so on), we repeated our analyses with six different 
selections of outliers for each species. This selection was based on the Mahalanobis 
distance of each occurrence point within the niche space defined by the PCA55. 
Six distance thresholds (distance values of 5 to 10) were then selected based on 
previous visual inspections (Supplementary Fig. 9).

We estimated the current sub-Saharan climatic niches of the 29 crops using the 
occurrence records for each of these in the Afrotropics. In the same climatic space, 
we also estimated the range of climatic conditions expected for 2050 and 2070 
at the current locations of cultivation of the 29 crops (hereafter, ‘future climatic 
conditions’). To obtain an estimate of how much climatic conditions are expected 
to change in the future in the locations where the 29 crop species are currently 
found in SSA (that is, the security measure), we measured the overlap between the 
current and future climate spaces for each crop species. The overlap was measured 

Nature Climate Change | www.nature.com/natureclimatechange

https://www.cwrdiversity.org
https://www.cwrdiversity.org
https://www.cwrdiversity.org
https://www.cwrdiversity.org
https://www.gbif.org
https://www.genesys-pgr.org
https://www.genesys-pgr.org
https://supportoffice.jp/ficessa/
https://supportoffice.jp/ficessa/
http://ecoregions2017.appspot.com
http://ecoregions2017.appspot.com
http://www.nature.com/natureclimatechange


LettersNAtUre ClImAte CHAnGe

as the percentage of the total area of the polygon representing the future climatic 
conditions that is intersected by the polygon representing the current niche. In 
total, 336 measures of overlap were obtained for each crop species as 336 future 
climate conditions were estimated based on two future time periods, 14 GCMs, two 
RCPs and six outlier selections. Medians, means and 95% confidence intervals were 
computed across these different combinations to obtain single consensus values for 
each crop and/or future climatic scenario.

The expected future climate space that is not currently occupied by a crop 
(hereafter, ‘new climate‘) may represent particularly high insecurity for its 
cultivation. Therefore, we isolated the area of the future climate space polygon not 
covered by the current niche polygon and assessed whether (1) the same crop is 
occupying this climatic space in other continents (adaptive strategy 1), (2) its wild 
relatives are occupying this climatic space somewhere across the world (adaptive 
strategy 2) and (3) the other 28 crops are occupying this climatic space in SSA 
(adaptive strategy 3). For the first adaptive strategy, we estimated the percentage 
of the new climate polygon area of the crop that overlaps with the current climatic 
niches of the same crop in each biogeographic realm of the world, except the 
Afrotropics and Antarctica (that is, Nearctic, Neotropic, Palaearctic, Indomalay, 
Australasia and Oceania). We also obtained an overlap measure by aggregating the 
six different regions’ polygons into one by using the aggregate function from the sp 
package51 in R. For the second adaptive strategy, we estimated the percentage of the 
new climate polygon area of the crop that intersects with the current global climatic 
niches of each of its wild relatives and of all of them aggregated together. For the 
third adaptive strategy, we estimated the percentage of the new climate polygon 
area of the crop that overlaps with the current climatic niches of each of the 
other 28 crops in the Afrotropics used in this study and of all of them aggregated 
together. For each adaptive strategy, medians, means and 95% confidence intervals 
of the overlap values were obtained for each crop and/or future climatic scenario 
across different GCM × RCP × outlier selection combinations. Mean overlap values 
of the different biogeographic realms (adaptive strategy 1) and crop wild relatives’ 
gene pools (adaptive strategy 2) were then compared by performing Kruskal–
Wallis tests and post hoc tests for multiple comparisons using the kruskalmc 
function of the pgirmess package56 in R. No overlap value was assigned to a 
particular gene pool/biogeographic realm if the species had no wild relative/crop 
occurrence from that gene pool/biogeographic realm (Ngenepool1 = 15, Ngenepool2 = 23, 
Ngenepool3 = 21, Ngenepool4 = 4). Individual PCAs were run for each of the three 
strategies, 29 crops and 336 measures of overlap. The two first axes of these PCAs 
explained 65.9 ± 3.6% of the variance in the environmental data (Supplementary 
Table 6). The methodological framework of this study is represented in Fig. 1.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are available from several databases 
listed in the Methods of the manuscript. Data are available from the authors on 
reasonable request and following data restrictions from these databases.

Code availability
The main R functions and packages used in this study are provided in the Methods. 
Full R scripts are available from the authors on reasonable request.
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Study description Using >200,000 worldwide occurrence records for 29 major crops and 778 of their wild relative species, we assess for each crop how 
future climatic conditions are expected to change in SSA and whether populations of the same crop from other continents, wild 
relatives around the world, or other crops from SSA are better adapted to expected future climatic conditions in the region. We used 
multivariate analyses (Principal Component Analyses) and convex hulls based on all occurrence records available for the 29 crops and 
778 crop wild relatives, and several climatic scenarios for years 2050 and 2070 (14 Global Circulation Models and 2 Representative 
Concentration Pathways). 
Further additional analyses were conducted in order to investigate variation through time and across the different climatic scenarios, 
and to identify regions of the world, gene pools of crop wild relatives, or crop species from Sub-Saharan Africa that could provide 
more solutions to agriculture in Sub-Saharan Africa under future climate change. To assess this point, we conducted several mean/
median comparisons.

Research sample We studied 29 different crop species and 778 of their wild relatives (Supplementary Tables 1-2). Most crops are food crops but some 
are industrial (e.g. cotton). Out of the 29 crops, 27 genera are represented given the presence of two yam species (Dioscorea 
rotundata-cayenensis complex and D. alata), and two coffee species (Coffea arabica and C. canephora). The crops comprise different 
life forms (trees, shrubs, herbs, vines) and longevities (annuals, perennials). The identity of 967 wild relative species of the 29 crops 
was therefore retrieved from the project “Adapting agriculture to climate change: collecting, protecting and preparing crop wild 
relatives” (https://www.cwrdiversity.org) in November 2016. As part of this project, each wild relative was assigned a degree of 
relatedness to its associated crop following a four genepool classification, with the species from the primary gene pool considered to 
be more closely related to the crop and therefore easier to breed with it than the species from the fourth. We used this classification 
because (i) it is based directly on plant crossing ability and past utility and (ii) complete phylogenies are not available for many of our 
species of interest. Finally, it is important to note that the 778 species are considered wild relatives in a broad sense given that some 
of them may have also been partly domesticated.

Sampling strategy The 29 crop species were chosen if: 1) they were known to be cultivated relatively widely in Sub-Saharan Africa (SSA) according to 
both the FAO16 and experts from Royal Botanic Gardens Kew, UK and the Council for Scientific and Industrial Research (CSIR), South 
Africa, 2) reliable and numerous occurrence data were available across their known distribution in SSA, and 3) their wild relatives 
could be identified. Because of the relatively poor taxonomic and geographic quality of infra-specific/hybrid data, we decided to work 
at a species level for both crops and wild relatives. We discarded 189 out of the 967 species as these did not have the minimum three 
occurrences necessary for conducting climatic niche analyses. We therefore considered all wild species known to be related to the 29 
crops, except those lacking geographic information.

Data collection N.K. obtained original species lists. S.P. and J.B. collated and cleaned species occurrence records from online databases (GBIF, CWR 
diversity, Rainbio, Genesys, and agricultural surveys) and therefore obtained the final list of species for analysis. S.P. and I.O. collected 
climatic and topographic data from the CHELSA database and the Global Multi-resolution Terrain Elevation Database (GMTED), and 
resampled the different layers at a 10 arc-min resolution.

Timing and spatial scale Occurrence records were downloaded in May 2017. They were collected previously by different institutions from 1950 to 2017. 
Climatic and topographic data are given for the 1979-2013, 2040-2060, and 2060-2090 periods, and were downloaded in January 
2019.

Data exclusions We discarded species for which no geographic data was available. 
 
The use of convex hulls for quantifying species climatic niches is sensitive to outliers. As some of our outliers may be due to 
previously unidentified sampling errors (e.g. poor geolocation, botanic gardens’ coordinates…), we repeated our analyses discarding 
six different selections of outliers for each species. This selection was based on the Mahalanobis distance of each occurrence point 
within the niche space defined by the PCA. Six distance thresholds (distance values of five to ten) were selected based on previous 
visual inspections.
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Randomization This does not apply here. We quantified observed climatic overlaps among species/populations rather than testing for the effect of a 
variable/treatment on species/populations.

Blinding This does not apply here as for randomization.

Did the study involve field work? Yes No

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 



3

nature research  |  reporting sum
m

ary
O

ctober 2018

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Clinical data

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging


	Potential adaptive strategies for 29 sub-Saharan crops under future climate change

	Online content

	Acknowledgements

	Fig. 1 Analytical framework.
	Fig. 2 Potential security and adaptive strategies for 29 sub-Saharan crops under future climate change by 2070.
	Fig. 3 Potential security and adaptive strategies for 29 sub-Saharan crops under different scenarios of future climate change.
	Fig. 4 Details of the three potential adaptive strategies under future climate change by 2070.




